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Dependence of protein-induced lipid bilayer deformations on protein shape

Carlos D. Alas and Christoph A. Haselwandter
Department of Physics and Astronomy and Department of Quantitative and Computational Biology,

University of Southern California, Los Angeles, California 90089, USA

(Received 9 August 2022; accepted 18 January 2023; published 6 February 2023)

Membrane proteins typically deform the surrounding lipid bilayer membrane, which can play an important
role in the function, regulation, and organization of membrane proteins. Membrane elasticity theory provides
a beautiful description of protein-induced lipid bilayer deformations, in which all physical parameters can be
directly determined from experiments. While analytic solutions of protein-induced elastic bilayer deformations
are most easily developed for proteins with approximately circular cross sections, structural biology has shown
that membrane proteins come in a variety of distinct shapes, with often considerable deviations from a circular
cross section. We develop here a boundary value method (BVM) that permits the construction of analytic
solutions of protein-induced elastic bilayer deformations for protein shapes with arbitrarily large deviations from
a circular cross section, for constant as well as variable boundary conditions along the bilayer-protein interface.
We apply this BVM to protein-induced lipid bilayer thickness deformations. Our BVM reproduces available
analytic solutions for proteins with circular cross section and yields, for proteins with noncircular cross section,
excellent agreement with numerical, finite element solutions. On this basis, we formulate a simple analytic
approximation of the bilayer thickness deformation energy associated with general protein shapes and show that,
for modest deviations from rotational symmetry, this analytic approximation is in good agreement with BVM
solutions. Using the BVM, we survey the dependence of protein-induced elastic bilayer thickness deformations
on protein shape, and thus explore how the coupling of protein shape and bilayer thickness deformations affects
protein oligomerization and transitions in protein conformational state.

DOI: 10.1103/PhysRevE.107.024403

I. INTRODUCTION

Membrane proteins play an important role in many es-
sential biological processes, such as signaling, cell shape
regulation, and the exchange of molecules between the
interior and exterior of cells or between intracellular com-
partments. Membrane proteins spanning the lipid bilayer
are characterized by large hydrophobic regions that approx-
imately match up with the thickness of the lipid bilayer
hydrophobic core [1–6]. However, distinct membrane proteins
often show distinct hydrophobic thicknesses, and transitions
in protein conformational state can change the protein’s hy-
drophobic thickness. Moreover, the lipid composition in cell
membranes tends to be highly heterogeneous, with distinct
lipids often showing distinct unperturbed lipid bilayer thick-
nesses. As a result, membrane proteins are generally expected
to show a (modest) hydrophobic mismatch with the surround-
ing lipid bilayer, resulting in protein-induced lipid bilayer
thickness deformations [7–17]. Membrane proteins may also
deform the lipid bilayer membrane without perturbing the
lipid bilayer thickness [18–24]. The energy cost of such
protein-induced lipid bilayer deformations depends on the
protein shape and conformational state, the lipid composition,
membrane mechanical properties such as membrane tension,
as well as membrane organization, and can thus regulate, or
even determine, membrane protein function.

Membrane elasticity theory provides a beautiful frame-
work for the quantitative description of protein-induced lipid

bilayer deformations with, at least in the most basic mod-
els, all physical parameters being determined directly from
experiments [7–11,13–20,22–26]. As a result, membrane elas-
ticity theory yields definite predictions for the energy cost
of protein-induced lipid bilayer deformations and, hence,
the coupling between lipid bilayer mechanics and membrane
protein function, allowing direct comparisons between the-
oretical predictions and experimental measurements. Over
the past two decades, breakthroughs in membrane protein
crystallography and, more recently, cryo-electron microscopy
have yielded enormous insight into the shape of membrane
proteins. While analytic solutions of protein-induced bilayer
deformations are most easily constructed for idealized protein
shapes with approximately circular cross section, structural
biology has shown that membrane proteins often exhibit con-
siderable deviations from a circular cross section. Membrane
protein shape may have important consequences for mem-
brane morphology, membrane elastic properties, membrane
curvature sensing and mechanosensing, the lateral organiza-
tion and orientation of membrane proteins, bilayer-mediated
protein interactions, and the regulation of protein function
[16,27–34].

The objective of this article is to develop, describe, test,
and apply a boundary value method (BVM) that permits the
construction of analytic solutions of protein-induced lipid bi-
layer deformations for protein shapes with arbitrarily large
deviations from a circular cross section. This BVM allows
for constant as well as variable boundary conditions along
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FIG. 1. Protein-induced lipid bilayer thickness deformations for
selected families of protein shapes: (a) Clover-leaf protein cross
section with fivefold symmetry, constant protein hydrophobic thick-
ness, and zero bilayer-protein contact slope, (b) polygonal protein
cross section with sixfold symmetry, constant protein hydropho-
bic thickness, and constant bilayer-protein contact slope U ′ = 0.3,
(c) clover-leaf protein cross section with threefold symmetry, a
fivefold symmetric (sinusoidal) variation in protein hydrophobic
thickness, and zero bilayer-protein contact slope, and (d) polygo-
nal protein cross section with sevenfold symmetry, constant protein
hydrophobic thickness, and a threefold symmetric (sinusoidal) varia-
tion in the bilayer-protein contact slope. The color map and purple
surfaces show the positions of the upper and lower lipid bilayer
leaflets, respectively. The bilayer-protein boundaries are color coded
according to their symmetries (see also Fig. 3 in Sec. II). For panels
(a) and (c) we used ε = 0.2 and ε = 0.3 in Eq. (17), respectively,
and for panels (b) and (d) we used P = 5 in Eqs. (18) and (19). All
bilayer surfaces were calculated using the reference parameter values
in Sec. II and the BVM for protein-induced lipid bilayer thickness
deformations described in Sec. III.

the bilayer-protein interface. In particular, we consider here,
as test cases for the BVM, four generic classes of protein
shapes breaking the rotational symmetry of protein-induced
lipid bilayer thickness deformations, which are illustrated in
Fig. 1. Inspired by observed molecular structures of mem-
brane proteins [35,36], we consider two classes of noncircular
membrane protein cross sections: Clover-leaf [see Fig. 1(a)]
and polygonal [see Fig. 1(b)] protein shapes. Furthermore,
we allow for variations in the bilayer-protein hydrophobic
mismatch [see Fig. 1(c)] as well as in the bilayer-protein con-
tact slope [see Fig. 1(d)] along the bilayer-protein interface.
Such variations in the bilayer-protein boundary conditions can
arise, on the one hand, as inherent features of the protein
structure or, on the other hand, as a result of, for instance,
the binding of small peptides, such as spider toxins, or other
molecules along the bilayer-protein interface [8,35–37]. For
each of these four classes of protein shapes we use the BVM
to obtain the energy cost of protein-induced lipid bilayer
thickness deformations, and test these results against cor-
responding numerical solutions obtained through the finite
element method (FEM) for bilayer thickness deformations

[16,33,34]. Inspired by the BVM, we develop a simple an-
alytic approximation of the bilayer thickness deformation
energy associated with the general protein shapes illustrated
in Fig. 1, and investigate the limits of applicability of this
analytic approximation. On this basis, we explore how pro-
tein shape couples to protein-induced lipid bilayer thickness
deformations, and thus affects protein oligomerization and
transitions in protein conformational state.

This article is organized as follows. Section II summarizes
the elasticity theory of protein-induced lipid bilayer thickness
deformations. In Sec. III we describe in detail the BVM for
bilayer thickness deformations, test this BVM against FEM
solutions, and discuss how the BVM can be used to calcu-
late protein-induced lipid bilayer thickness deformations, and
their associated elastic energy, for general protein shapes. On
this basis, we develop in Sec. IV a simple analytic scheme for
estimating the energy of protein-induced lipid bilayer thick-
ness deformations for membrane proteins with noncircular
cross sections. In Secs. V and VI we test this analytic ap-
proximation against BVM solutions. In Sec. V we survey the
dependence of the bilayer thickness deformation energy on
membrane protein shape, while in Sec. VI we explore some
implications of these results for the self-assembly of protein
oligomers and transitions in protein conformational state. A
summary and conclusions are provided in Sec. VII.

II. MODELING PROTEIN-INDUCED BILAYER
THICKNESS DEFORMATIONS

The preferred hydrophobic thickness of lipid bilayers de-
pends strongly on the lipid chain length [1–6] while different
membrane proteins, and even different conformational states
of the same membrane protein, often have distinct hydropho-
bic thicknesses. For membrane proteins that offer a rigid
interface to the lipid bilayer and show a modest hydropho-
bic mismatch with the unperturbed lipid bilayer, the lipid
bilayer thickness is expected to deform in the vicinity of the
membrane protein so as to achieve hydrophobic matching at
the bilayer-protein interface [7–17]. The resulting protein-
induced lipid bilayer thickness deformations can result in
a pronounced dependence of protein conformational state,
and protein function, on lipid chain length [9,38–42]. The
purpose of this section is to summarize the elasticity the-
ory of protein-induced lipid bilayer thickness deformations
[7–11,13–16,25,31,32]. We first outline the standard elasticity
theory of lipid bilayer thickness deformations (see Sec. II A).
We then describe how protein shape couples to lipid bilayer
thickness, and discuss the models of protein shape considered
in this article (see Sec. II B).

A. Elasticity theory of lipid bilayer deformations

Lipid bilayer thickness deformations tend to decay rapidly,
with a characteristic decay length ≈1 nm [8,14]. When mod-
eling protein-induced lipid bilayer thickness deformations it
is therefore convenient to represent the positions of the two
lipid bilayer leaflets in the Monge parametrization of surfaces,
h± = h±(x, y), with Cartesian coordinates (x, y) (see Fig. 2).
It is instructive to express h+(x, y) and h−(x, y) in terms of the
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FIG. 2. Notation used for the calculation of protein-induced lipid
bilayer thickness deformations in (a) angled and (b) side views. As
an example, we consider here a membrane protein with a noncir-
cular (clover-leaf) bilayer-protein boundary curve, C(θ ), constant
hydrophobic thickness, W (θ ) = W0, and zero bilayer-protein contact
slope, U ′(θ ) = 0. The positions of the upper and lower lipid bilayer
leaflets are denoted by h+ and h−, from which the bilayer midplane
and bilayer thickness deformation fields h and u can be obtained via
Eqs. (1) and (2), respectively. We denote one-half the unperturbed
bilayer thickness by a, resulting in a hydrophobic mismatch U =
W/2 − a at the bilayer-protein interface. The unit vectors t̂ and n̂
denote the directions tangential and perpendicular (pointing towards
the protein) to the bilayer-protein boundary, respectively.

midplane deformation field h = h(x, y),

h = h+ + h−

2
, (1)

and in terms of the thickness deformation field u = u(x, y),

u = h+ − h− − 2a
2

, (2)

where a is one-half the unperturbed lipid bilayer thickness
(Fig. 2). The value of a depends on, for instance, the chain
length of the lipid species under consideration, and can be
directly measured in experiments [7,8,26].

The membrane elasticity theory describing the shape of
lipid bilayers [3,43–45] dates back to the classic work of W.
Helfrich [18], P. B. Canham [19], E. A. Evans [20], and H.

W. Huang [9]. Interestingly, one finds that the elastic energies
governing h and u in Eqs. (1) and (2) decouple from each other
to leading order [13,25]. In the most straightforward model of
bilayer-protein interactions [7–11,13–16,43–47], the energy
cost of protein-induced lipid bilayer midplane deformations is
then captured by the classic Helfrich-Canham-Evans energy
[18–20], and the energy cost of protein-induced lipid bilayer
thickness deformations is given by [7,9–11,13–16]

G = 1
2

∫
dx dy

[

Kb(2H )2 + Kt

(
u
a

)2
]

, (3)

where the integral runs over the (in-plane) lipid bilayer
surface, Kb is the lipid bilayer bending rigidity, the mean cur-
vature H = 1

2∇2u, and Kt is the bilayer thickness deformation
modulus.

The terms Kb(∇2u)2 and Kt (u/a)2 in Eq. (3) provide
lowest-order descriptions of the energy cost of bilayer bending
and the compression or expansion of the bilayer hydropho-
bic core, respectively. Equation (3) has been successfully
employed to describe bilayer-protein interactions in a vari-
ety of experimental systems [3,7–9,14,40,48]. In general, the
protein-induced lipid bilayer thickness deformations captured
by Eq. (3) compete with protein-induced bilayer midplane
deformations [8,18–24,27–29,46,47,49,50]. Depending on the
specific bilayer-protein system under consideration, both con-
tributions to the elastic energy of bilayer-protein interactions
may need to be considered [8,13]. For simplicity, we assume
in Eq. (3) that the bilayer is under negligible lateral mem-
brane tension. A nonzero membrane tension could be readily
included in Eq. (3) [16,32] and may provide a substantial
contribution to Eq. (3) in a variety of scenarios, such as
membrane systems under osmotic shock [9,13,39–41,51,52].
We also assume in Eq. (3) that the lipids forming the bilayer
have zero intrinsic curvature. A nonzero lipid intrinsic cur-
vature could also be included in the formalism employed here
[10,11,53]. Furthermore, the elastic energy of protein-induced
lipid bilayer deformations involves, in general, contributions
due to lipid tilt deformations [18,29,54–56], in addition to
contributions due to bilayer thickness and bilayer midplane
deformations. Finally, we note that one could extend Eq. (3)
to include a bending term associated with the Gaussian mem-
brane curvature. Previous work on bilayer-protein interactions
indicates that Gaussian curvature contributions to Eq. (3) tend
to be negligible in experiments [13,53]. We employ here
Eq. (3) as a simple model system for investigating the effect
of protein shape on the elastic energy of protein-induced
lipid bilayer deformations while noting that, as illustrated
above, Eq. (3) can be extended and modified in a variety of
ways.

Similarly as the unperturbed lipid bilayer thickness 2a,
the effective parameters Kb and Kt in Eq. (3) characterizing
the elastic properties of the bilayer membrane depend on
the lipid composition, and can be directly measured in ex-
periments [7,8,26]. Typical values of Kb, Kt , and a for cell
membranes are Kb = 20 kBT , Kt = 60 kBT/nm2, and a =
1.6 nm [14,26,57,58]. Unless stated otherwise, we use here
these values of Kb, Kt , and a. When studying the depen-
dence of protein-induced bilayer thickness deformations on
lipid chain length we follow Refs. [13,26,59] and assume, for
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simplicity, a linear dependence of a on lipid chain length:

a = 1
2 (0.13m + 1.7) nm. (4)

The integer m in Eq. (4) denotes the lipid chain length (num-
ber of carbon atoms comprising each lipid chain), with the
approximate range 13 ! m ! 22 for phospholipids in cell
membranes [1,2,5,26]. For simplicity, we take Kb and Kt to
be independent of m while noting that, in general, Kb and Kt
may have a (weak) dependence on m [26].

The effective parameters Kb, Kt , and a in Eq. (3) yield the
characteristic length scale

λ =
(

a2Kb

Kt

)1/4

, (5)

which corresponds to the characteristic decay length of bilayer
thickness deformations [13]. As alluded to above, we have
λ ≈ 1 nm [8,14]. Similarly, the bilayer bending rigidity Kb
defines a characteristic energy scale in Eq. (3). It is therefore
convenient to recast the bilayer thickness deformation energy
in Eq. (3) in terms of the characteristic spatial and energy
scales, λ and Kb. Unless stated otherwise, we use here a
dimensionless form of Eq. (3) such that G → ḠKb, x → x̄λ,
y → ȳλ, u → ūλ, a → āλ, and Kt → K̄t Kb/λ

2, resulting in

Ḡ = 1
2

∫
dx̄ dȳ[(∇̄2ū)2 + ū2], (6)

where ∇̄ ≡ λ∇.
We assume that, for a given protein conformational state,

the dominant bilayer thickness deformation field ū(x̄, ȳ)
minimizes Eq. (6) subject to suitable boundary conditions
[7,9–11,13,14,16]. The Euler-Lagrange equation associated
with Eq. (6) is given by

(∇̄2 − ν̄+)(∇̄2 − ν̄−)ū = 0 (7)

with ν̄± = ±i, where i is the imaginary unit. To construct
the general solution of Eq. (7) for protein-induced bilayer
thickness deformations it is useful to transform (x̄, ȳ) to the
dimensionless polar coordinates (r̄, θ ) with the protein center
as the origin of the polar coordinate system. Assuming that
protein-induced bilayer thickness deformations are localized
about the protein we have ū → 0 as r̄ → ∞ [9,39,53], in
which case Eq. (7) yields [16,31,32]

ū(r̄, θ ) = f̄ +(r̄, θ ) + f̄ −(r̄, θ ), (8)

where the Fourier-Bessel series

f̄ ±(r̄, θ ) = A±
0 K0(

√
ν̄±r̄) +

∞∑

n=1

[A±
n Kn(

√
ν̄±r̄) cos(nθ )

+ B±
n Kn(

√
ν̄±r̄) sin(nθ )], (9)

in which the Kn are the modified Bessel functions of the
second kind [60] and the values of the coefficients A±

0 , A±
n ,

and B±
n are determined by the bilayer-protein boundary con-

ditions.
The bilayer thickness deformation energy in Eq. (6) is

conveniently evaluated for the stationary bilayer thickness
deformation field in Eq. (8) by noting that, via Eq. (7), Eq. (6)
can be transformed to a line integral along the bilayer-protein
boundary C̄ [13,16,32] (Fig. 2). For simplicity, we thereby

take the bilayer-protein boundary to be specified by the polar
curve r̄ = C̄(θ )r̂, where r̂ is the radial unit vector pointing
away from the protein center. We thus have

Ḡ = 1
2

∫ 2π

0
dθ l̄ n̂ · (∇̄ū∇̄2ū − ū∇̄3ū)|r̄=C̄(θ ), (10)

where the line element l̄ =
√

[C̄(θ )]2 + [C̄′(θ )]2, and the unit
vector n̂ is normal to the tangent of r̄ = C̄(θ )r̂ and points
towards the protein (Fig. 2). Note that the term in brack-
ets in Eq. (10) may be interpreted as a bilayer-protein line
tension along the bilayer-protein boundary [13,16,41]. The
normal vector n̂ in Eq. (10) is obtained by differentiating the
bilayer-protein boundary curve r̄ = C̄(θ )r̂ with respect to θ
and rotating the resulting tangent vector by π/2 so as to point
towards the protein,

n̂ = −C̄(θ )r̂ + C̄′(θ )θ̂
l̄

, (11)

where we have noted that the (counterclockwise) angular unit
vector θ̂ = d r̂/dθ in polar coordinates (Fig. 2). Equation (10)
with Eq. (11) allows calculation of Ḡ in Eq. (6) and, hence,
G in Eq. (3) along a one-dimensional curve rather than over
a two-dimensional surface, which provides a computationally
efficient method for evaluating Ḡ.

B. Modeling protein shape

The coefficients A±
0 , A±

n , and B±
n in Eq. (9) are fixed

by the boundary conditions at the bilayer-protein interface.
The general mathematical form of these boundary conditions,
which encode the key protein properties governing protein-
induced lipid bilayer thickness deformations, follows from
the calculus of variations [61,62]. Based on previous work on
protein-induced bilayer thickness deformations [7–12,39], we
assume that the lipid bilayer thickness deforms in the vicinity
of membrane proteins so as to achieve hydrophobic matching
at the bilayer-protein interface. We thus have the boundary
condition

ū(r̄, θ )|r̄=C̄(θ ) = Ū (θ ), (12)

where the bilayer-protein hydrophobic mismatch

Ū (θ ) = 1
2 [W̄ (θ ) − 2ā], (13)

in which W (θ ) = λW̄ (θ ) is the protein hydrophobic thickness
along the bilayer-protein boundary (Fig. 2). For large enough
magnitudes of U , membrane proteins or lipids may expose
parts of their hydrophobic regions to water, which would
amount to an offset of W̄ in Eq. (13). For a given membrane
protein, W (θ ) can be estimated from the molecular struc-
ture of the membrane protein [7,8,16,32,33] and/or computer
simulations [17,63]. We explore here protein-induced bilayer
thickness deformations for generic models of W (θ ) inspired
by the molecular structure of the mechanosensitive channel of
large conductance (MscL) [64–67].

In addition to Eq. (12), it is also necessary to specify
boundary conditions on the (normal) derivative of u at the
bilayer-protein interface [61,62]. The appropriate choice for
these boundary conditions has been a matter of debate and is
likely to depend on the specific system under consideration
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[7–11,13–17,25,29,39,41,55,56,68]. We generally focus on
the fixed-value boundary condition

n̂ · ∇̄ū(r̄, θ )|r̄=C̄(θ ) = Ū ′(θ ), (14)

but also explore choices for Ū ′(θ ) minimizing the bilayer
thickness deformation energy. One may physically interpret
fixed-value boundary conditions on the derivative of u as
corresponding to scenarios in which the lipid leaflet surfaces
are normal to the protein hydrophobic surface at the bilayer-
protein boundary [13], while natural boundary conditions
minimizing the bilayer thickness deformation energy permit
arbitrary slopes of u [39]. A more detailed molecular model
of the gradients of the lipid bilayer leaflets at bilayer-protein
interfaces can be developed by explicitly taking into account
lipid tilt [12,56,69]. We allow for constant as well as varying
Ū ′(θ ) in Eq. (14).

For a (hypothetical) membrane protein with a perfectly cir-
cular cross section C̄(θ ) = R̄, where R̄ is the (dimensionless)
protein radius, and constant Ū and Ū ′, the bilayer-protein
boundary conditions in Eqs. (12) and (14) are azimuthally
symmetric about the protein center, and the resulting
protein-induced bilayer thickness deformations also show
azimuthal symmetry about the protein center [9,13,39,41].
Equations (12) and (14) suggest three, not mutually exclusive,
modes for protein structures to break rotational symmetry, and
to hence endow protein-induced bilayer thickness deforma-
tions with a nontrivial structure [31,32]. First, the value of
Ū in Eq. (12) or, second, the value of Ū ′ in Eq. (14) may
vary along the bilayer-protein interface. To explore generic ef-
fects of varying Ū or Ū ′ on protein-induced bilayer thickness
deformations we consider the bilayer-protein hydrophobic
mismatch

Ū (θ ) = Ū0 + β̄ cos(wθ ) (15)

and the bilayer-protein contact slope

Ū ′(θ ) = Ū ′
0 + γ̄ cos(vθ ), (16)

where Ū0 and Ū ′
0 denote the average bilayer-protein hy-

drophobic mismatch and bilayer-protein contact slope, β̄ and
γ̄ denote the amplitudes of the perturbations about these
average values, and w and v denote the protein symme-
tries associated with variations in Ū and Ū ′. Unless stated
otherwise, we set here Ū0λ = −0.1 nm and β̄λ = 0.5 nm
in Eq. (15) for all calculations involving a modulation in
the bilayer-protein hydrophobic mismatch, and Ū ′

0 = 0 and
γ̄ = 0.3 in Eq. (16) for all calculations involving a modu-
lation in the bilayer-protein contact slope. For all scenarios
considered here in which we keep Ū or Ū ′ constant along
the bilayer-protein interface we set, unless stated otherwise,
Ūλ = 0.3 nm or Ū ′ = 0. The values of U and U ′ employed
here are in line with previous work on MscL and gramicidin
channels [14,17,39,64,66].

Angular variations in C̄(θ ) along the bilayer-protein
boundary r̄ = C̄(θ )r̂ provide, in addition to Eqs. (15) and
(16), a third mode for a protein structure to break azimuthal
symmetry of protein-induced bilayer thickness deformations
about the protein center. Inspired by molecular structures
of tetrameric and pentameric MscL [32,33,64,67] and other
membrane proteins [35,36], we consider here two generic
classes of protein shapes breaking rotational symmetry. On the

FIG. 3. Cross sections of cylindrical protein shapes (left-most
panels) and (a) clover-leaf and (b) polygonal protein shapes (right
panels). The clover-leaf protein cross sections in panel (a) are ob-
tained from Eq. (17) with ε = 0.07, 0.14, 0.21, 0.28, and 0.35 (left
to right) and s = 1, 2, 3, 4, and 5 (top to bottom), with ε = 0
yielding a circular protein cross section. Note that the clover-leaf
protein cross sections with s = 1 show only small deviations from
the corresponding circular protein cross section obtained with ε = 0
in Eq. (17) (dashed curves) for the values of ε considered here.
The polygonal protein cross sections in panel (b) are obtained from
Eq. (18) with P = 1, 2, 3, 4, and 5 (left to right) and s = 4, 5, 6, 7,
and 8 (top to bottom). As a guide to the eye, these polygonal protein
cross sections are inscribed in circles obtained with P = 0 in Eq. (18)
(dashed curves).

one hand, we consider clover-leaf protein cross sections spec-
ified by

C̄(θ ) = R̄[1 + ε cos(sθ )], (17)

where ε parameterizes the magnitude of deviations from a
circular protein cross section, ε = 0 for circular protein cross
sections, and s denotes the symmetry of the boundary curve
[see Figs. 2(a) and 3(a)]. On the other hand, we consider
(rounded) polygonal protein cross sections specified by the
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series

C̄(θ )

= ĀR̄

√√√√√




P∑

p=−P

cos(sp + 1)θ
(sp + 1)2




2

+




P∑

p=−P

sin(sp + 1)θ
(sp + 1)2




2

,

(18)

where larger P yield sharper polygonal corners with P = 0 for
circular protein cross sections, ĀR̄ is a rescaling factor chosen
so as to ensure that the polygons are inscribed in circles
of radius R̄, and s denotes the polygonal symmetry [32,70]
[see Fig. 3(b)]. We have

ĀR̄ = R̄
∑P

p=−P
1

(sp+1)2

. (19)

Unless stated otherwise, we set P = 5 in Eqs. (18) and (19).
For the scenarios considered here we found that an increase
in P beyond P = 5 resulted in only minor shifts in the bi-
layer thickness deformation energy. For all the calculations
described here we use R̄λ ≈ 2.3 nm in Eqs. (17) and (19),
which approximately corresponds to the observed size of a
closed state of MscL [13,64].

III. BOUNDARY VALUE METHOD FOR BILAYER
THICKNESS DEFORMATIONS

In this section we introduce a BVM for bilayer thickness
deformations, which allows calculation of protein-induced
bilayer thickness deformations, and their associated elastic en-
ergy, for general protein shapes. In the following sections we
use this BVM to calculate the bilayer thickness deformation
field ū(r̄, θ ) in Eq. (8), and the resulting bilayer thickness
deformation energy G in Eq. (3), for the clover-leaf and polyg-
onal protein shapes r̄ = C̄(θ )r̂ in Eqs. (17) and (18) and the
boundary conditions Ū (θ ) and Ū ′(θ ) in Eqs. (15) and (16).
We first provide a general formulation of the BVM for bilayer
thickness deformations and validate this BVM against exact
analytic and FEM solutions (see Sec. III A). We then dis-
cuss how the numerical performance of the BVM for bilayer
thickness deformations can be improved by employing an
adaptive point distribution (APD) that results in a nonuniform
distribution of boundary points for noncircular protein cross
sections (see Sec. III B).

A. Formulation and validation of the boundary value method

The BVM for bilayer thickness deformations takes the
analytic solution for ū(r̄, θ ) in Eq. (8) as its starting point and
assumes that the infinite series in this general solution can be
truncated at some finite order N for a desired precision:

ū(r̄, θ ) ≈ f̄ +
N (r̄, θ ) + f̄ −

N (r̄, θ ), (20)

where

f̄ ±
N (r̄, θ ) = A±

0 K0(
√

ν̄±r̄) +
N∑

n=1

[A±
n Kn(

√
ν̄±r̄) cos(nθ )

+ B±
n Kn(

√
ν̄±r̄) sin(nθ )]. (21)

The solution in Eq. (20) with Eq. (21) contains the 4N + 2
unknown constants A±

0 , A±
n , and B±

n . In the BVM for bilayer
thickness deformations, we fix these coefficients by imposing
the boundary conditions in Eqs. (12) and (14) at 2N + 1
boundary points along the bilayer-protein interface. For now,
we take these boundary points to be uniformly distributed
along the bilayer-protein interface, with a constant arc length
separating adjacent boundary points along the bilayer-protein
interface. We return to the distribution of boundary points in
Sec. III B.

From the boundary conditions in Eqs. (12) and (14) we
have

ū(r̄, θ j )|r̄=C̄(θ j ) = Ū (θ j ), (22)

n̂ · ∇̄ū(r̄, θ j )|r̄=C̄(θ j ) = Ū ′(θ j ), (23)

in which j = 1, 2, . . . , 2N + 1 denote the boundary points
along the bilayer-protein interface, where C̄(θ ) = R̄ for pro-
teins with a circular cross section, C̄(θ ) is as in Eq. (17)
for clover-leaf protein shapes, and C̄(θ ) is as in Eq. (18) for
polygonal protein shapes (Fig. 3). Equations (22) and (23)
amount to a linear system of equations

Ax = b, (24)

where the vector x has dimension 4N + 2 and contains the
unknown constants A±

0 , A±
n , and B±

n , the 4N + 2 components
of the vector b contain the boundary conditions on the right-
hand sides of Eqs. (22) and (23), and A is a square matrix
of order 4N + 2 that has the coefficients of the constants
A±

0 , A±
n , and B±

n on the left-hand sides of Eqs. (22) and (23)
as its entries. Equation (24) can be solved efficiently using
the extensive numerical methods available for the solution of
matrix equations. We employed here LU decomposition with
partial pivoting to solve Eq. (24) for x [71,72].

To quantify numerical errors in our BVM solutions it is
useful to compute, based on the calculated A±

0 , A±
n , and B±

n in
Eq. (20) with Eq. (21), the values of ū(r̄, θ ) along the bilayer-
protein boundary for a given set of reference points distinct
from the boundary points employed for the BVM solution
in Eq. (24). We compile these computed boundary values of
ū(r̄, θ ) in a vector b̃, and compare b̃ to the corresponding exact
boundary values b′ mandated by the boundary conditions in
Eqs. (12) and (14),

ηb′ = 100 × ||b̃ − b′||L2

||b′||L2
, (25)

where || · ||L2 is the L2 norm [71]. For all the results shown
in this article, we used vectors b′ and b̃ with 800 components
[400 components each for Ū (θ ) and Ū ′(θ )] in Eq. (25), which
we chose for a given protein shape so as to yield reference
points with a uniform spacing in θ over the interval 0 ! θ !
2π . Figure 4(a) shows ηb′ in Eq. (25) for the clover-leaf shapes
in Eq. (17) with s = 3 and various values of ε. As expected,
we find that ηb′ tends to decrease with increasing N in Eq. (20)
with Eq. (21), indicating that a greater accuracy of BVM
solutions is obtained at larger N . The local minima of ηb′ in
Fig. 4(a) correspond to values of N that are multiples of s,
which suggests that the accuracy of the BVM is improved if
N matches the protein symmetry. Figure 4(b) indicates that

024403-6



DEPENDENCE OF PROTEIN-INDUCED LIPID BILAYER … PHYSICAL REVIEW E 107, 024403 (2023)

FIG. 4. Percentage difference between the exact bilayer thick-
ness deformation field along the bilayer-protein boundary and the
bilayer thickness deformation field obtained from the BVM solution,
ηb′ in Eq. (25), as a function of the number of terms in the Fourier-
Bessel series in Eq. (20) with Eq. (21) for (a) uniformly distributed
points along the bilayer-protein boundary and (b) the boundary point
distributions implied by the APD method (see Sec. III B). For both
panels we considered three-fold clover-leaf protein shapes (s = 3)
in Eq. (17) with the indicated values of ε, R̄λ ≈ 2.3 nm, and the
constant Ūλ = 0.3 nm and Ū ′ = 0. In panel (b) we used, for ease of
comparison, the same gap factor ) = 0.25 in Eq. (28) for all curves.

the convergence of BVM solutions with increasing N can
be improved substantially through an APD that allows for a
nonuniform distribution of boundary points, which we discuss
in Sec. III B.

We performed our BVM calculations in C++ using the
arbitrary precision numerical library Arb [73]. Unless stated
otherwise, we allowed for sufficient numerical precision so
that the boundary error ηb′ ! 0.1% in Eq. (25) and we ob-
tained changes in G and ηb′ of no more than 10−5% as the
numerical precision was increased. We generated all figures in
MATLAB [74]. To speed up our calculations, we multithreaded
some of the source code of the Arb library [75]. Appendix A
provides a more in-depth description of our computational im-
plementation of the BVM and discusses possible issues with
the numerical solution of Eq. (24) arising from floating point
errors and numerical instabilities. For the polygonal protein
shapes considered here, with P = 5 in Eq. (18) with Eq. (19),
and for the clover-leaf protein shapes considered here with
large s and/or large ε in Eq. (17) we found it convenient
to perform the BVM calculations with numerical precision
greater than double precision (64 bits). In Appendix B we

FIG. 5. Percentage difference between exact analytic and FEM
(red curves) or BVM (blue curves) solutions for the bilayer thickness
deformation energy, ηG in Eq. (27), as a function of the average edge
size 〈L〉 used in the FEM solution (upper axes) or the number of
terms in Eq. (20) with Eq. (21) used in the BVM solution (lower
axes) for (a) a cylindrical protein with R̄λ = 2.3 nm and Ūλ =
0.3 nm and (b) a crown-shaped protein with R̄λ = 2.3 nm, Ū0λ =
−0.1 nm, β̄λ = 0.5 nm, and w = 5 in Eq. (15). We set Ū ′ = 0 for
both panels.

illustrate the extent to which double precision calculations
could be used to approximate the BVM results described
here.

In our BVM calculations we evaluate the bilayer thickness
deformation energy G in Eq. (3) by numerically computing
Eq. (10) using the same 400 reference points employed to
calculate ηb′ in Eq. (25). To this end, we approximate Ḡ in
Eq. (10) through Eq. (20) with Eq. (21),

Ḡ ≈ i
2

∫ 2π

0
dθ l̄ (Ū ′ − Ū n̂ · ∇̄)( f̄ +

N − f̄ −
N )|r̄=C̄(θ ), (26)

where we have used Eq. (7) and the boundary conditions
in Eqs. (12) and (14). We have confirmed that, within the
numerical accuracy used here, identical results for ηb′ and
Ḡ are obtained with more than 400 reference points. Note
that l̄ in Eq. (26) is real and that Eq. (26) must evaluate to
a real number, which means that the remaining terms in the
integrand in Eq. (26) evaluate to a purely imaginary number.

We validated the BVM for bilayer thickness deformations
against exact analytic solutions obtained for proteins with
circular cross sections [9,13,16,31,32,39] and against FEM
solutions [16,33,34] (see Fig. 5). In particular, we consider in
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Fig. 5 cylindrical membrane proteins with constant U and U ′

[see Fig. 5(a)], for which the exact analytic solution of bilayer
thickness deformations simply amounts to the zeroth-order
terms in Eq. (20) with Eq. (21) [9,13,39]. Furthermore, we
consider in Fig. 5 crown-shaped membrane proteins with cir-
cular cross section, constant U ′, and the periodically varying
U (θ ) in Eq. (15) [see Fig. 5(b)], for which the exact analytic
solution is obtained at order N = w in Eq. (20) with Eq. (21)
[16,31,32]. We quantified the level of agreement between the
BVM and FEM solutions and the corresponding exact analytic
solutions through the percentage difference in the calculated
bilayer thickness deformation energy G in Eq. (3),

ηG = 100 ×
∣∣∣∣
G − Ganaly

Ganaly

∣∣∣∣, (27)

where Ganaly denotes the analytic solution [9,13,16,31,32,39]
and G denotes the corresponding BVM or FEM solutions. We
found, as expected, excellent numerical agreement between
the BVM and the aforementioned exact analytic solutions for
N = 0 [Fig. 5(a)] or N " w [Fig. 5(b)] within floating point
error. The FEM solutions in Fig. 5 are, up to their expected
numerical precision [16], in good agreement with the exact
analytic and BVM solutions, with the agreement improving
with decreasing average edge size 〈L〉 in the FEM grid. For
both cylindrical and crown-shaped membrane proteins, we
have ηG ≈ 0.01% for 〈L〉 ≈ 0.1 nm in the FEM solutions in
Fig. 5.

B. Nonuniform boundary point distributions

As illustrated in Figs. 4 and 5, the BVM can provide a
highly accurate method for calculating protein-induced bi-
layer thickness deformations. However, Fig. 4(a) also shows
that, for large enough deviations from a circular protein
cross section, accurate BVM solutions require a large num-
ber of terms in the Fourier-Bessel series in Eq. (20) with
Eq. (21). For noncircular protein cross sections, the numeri-
cal performance of the BVM can be improved substantially
by choosing suitable, nonuniform boundary point distribu-
tions. In particular, we found that boundary point distributions
that assign more points to, as viewed from the lipid bilayer,
concave boundary regions yield a more rapid convergence
of G with increasing N . This can be understood intuitively
by noting that, in the concave regions of a boundary curve,
different sections of the boundary curve can produce over-
lapping bilayer thickness deformation fields, inducing protein
self-interactions. One expects that higher-order terms in the
Fourier-Bessel series in Eq. (20) with Eq. (21) are required to
capture such interactions [16,31].

To assign more boundary points to the concave boundary
regions of clover-leaf and (finite-P) polygonal protein shapes,
we employ an APD of the BVM boundary points. In the APD
method, we distribute the 2N + 1 boundary points such that
boundary points are always assigned to the apex points along
the bilayer-protein boundary curves farthest away from the
protein center (see Fig. 6). We distribute the remaining bound-
ary points along the sections of the bilayer-protein boundary
curves that are an arc length l̄ " *̄ away from the apex points

FIG. 6. Illustration of the APD method used to increase the nu-
merical efficiency of BVM solutions for (a) a threefold clover-leaf
protein shape (s = 3) and (b) a fourfold clover-leaf protein shape
(s = 4) in Eq. (17). The boundary points used for the BVM solutions
are indicated by blue dots. In panel (a) we set ε = 0.38, N = 31, and
) = 0.62 for the gap length *̄ in Eq. (28). In panel (b) we set ε =
0.30, N = 42, and ) = 0.72. For both panels we set R̄λ ≈ 2.3 nm.
To achieve an approximately periodic distribution of boundary points
for even s, we duplicated in panel (b) the boundary point at the
rightmost apex, and slightly offset the resulting two boundary points
along the bilayer-protein interface (see main text). The values of
N in panels (a) and (b) were chosen for illustrative purposes.
We generally employ values of N greater than those considered
here so as to meet the numerical precision criteria imposed here
(see main text).

such that these points are uniformly spaced in arc length, with
the gap length

*̄ = )
+̄

2s
, (28)

where the gap factor ) satisfies 0 < ) < 1, +̄ is the (di-
mensionless) protein circumference, and s is the symmetry of
the clover-leaf or polygonal protein shape [see also Eqs. (17)
and (18)] (Fig. 6). For even values of s, we consider in our
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APD method the general solution in Eq. (20) with Eq. (21)
for N = sM/2 with integers M " 3. For odd values of s,
we allow in Eq. (20) with Eq. (21) for N = sM/2 for even
integers M " 3, and for N = (sM − 1)/2 for odd integers
M " 3. To achieve an approximately periodic distribution of
boundary points for even s and for odd s with even M, we
found it convenient to duplicate one of the apex boundary
points, with a slight offset in the duplicated boundary points
by an equal arc length distance from the apex [see Fig. 6(b)].
For greater numerical accuracy, this distance from the apex
could be optimized so as to reduce the boundary error ηb′

in Eq. (25), but we found it sufficient here to set it equal to
one-half the arc length spacing between the boundary points
in the concave boundary regions. Unless stated otherwise, we
used the APD method for all BVM calculations described in
this article, fixing ) in Eq. (28) and N in Eq. (20) with Eq. (21)
such that the boundary error ηb′ ! 0.1% in Eq. (25) and we
obtained changes in G and ηb′ of no more than 10−5% as the
numerical precision was increased.

As illustrated in Fig. 4(b) for clover-leaf protein shapes,
the APD method employed here improves considerably the
convergence of the BVM with increasing N , particularly for
proteins that show substantial deviations from a circular cross
section. As a result, a given numerical accuracy of BVM
solutions can be achieved with smaller N . We note that,
for proteins with (discrete) rotational symmetry, the Fourier-
Bessel series in Eq. (20) with Eq. (21) must show the same
symmetry. Indeed, in our BVM calculations we find that,
within the numerical precision employed here, the coefficients
of terms in Eq. (20) with Eq. (21) that break the protein
symmetry take values equal to zero. On this basis one could,
for a given protein symmetry, further improve the numeri-
cal efficiency of the BVM by using the protein symmetry
to remove some of the terms in the Fourier-Bessel series in
Eq. (20) with Eq. (21). For the scenarios considered here the
BVM was efficient enough so as not to require such further
refinement.

Figure 7 illustrates the calculation of the bilayer thickness
deformation energy, G in Eq. (3), using the BVM with APD
for the clover-leaf protein shapes in Eq. (17) with various
protein symmetries, s, and deviations from a circular protein
cross section, ε. As expected [32,34], we find in Fig. 7(a)
that G increases with increasing s and ε. We also show in
Fig. 7 the corresponding results obtained from the FEM with
an average edge size 〈L〉 ≈ 0.1 nm. In Fig. 7(b) we quantify
the agreement between our BVM and FEM results through the
percentage difference in G,

µ′
G = 100 ×

∣∣∣∣
GBVM − GFEM

GFEM

∣∣∣∣, (29)

where GBVM and GFEM correspond to the values of G in Eq. (3)
obtained through the BVM and the FEM [16,33,34], respec-
tively. We find in Fig. 7 that the BVM and FEM solutions yield
excellent agreement for the energy of protein-induced bilayer
thickness deformations for noncircular as well as circular
protein cross sections, with the level of agreement between
BVM and FEM solutions being in line with the accuracy of
the FEM solutions expected from Fig. 5.

FIG. 7. Comparing BVM and FEM solutions for the elastic en-
ergy of protein-induced bilayer thickness deformations. (a) Bilayer
thickness deformation energy, Ḡ in Eq. (6), obtained using BVM
and FEM solutions for ū in Eq. (2) and (b) corresponding percent-
age difference between the BVM and FEM solutions for Ḡ, µ′

G in
Eq. (29), for the clover-leaf protein shapes in Eq. (17) as a function
of ε with the indicated values of s, R̄λ ≈ 2.3 nm, Ūλ = 0.3 nm, and
Ū ′ = 0. For the FEM solutions we employed an average edge size
〈L〉 ≈ 0.1 nm.

IV. ANALYTIC APPROXIMATION OF THE BILAYER
THICKNESS DEFORMATION ENERGY

For membrane inclusions with circular cross section, the
solution for the thickness deformation field ū(r̄, θ ) in Eq. (8)
with Eq. (9) and the bilayer thickness deformation energy in
Eq. (10) yield exact analytic expressions for the energy of
protein-induced bilayer thickness deformations for arbitrary
(angular) variations in the bilayer-protein boundary conditions
[9–11,16,31,32,34]. The purpose of this section is to develop,
on this basis, a simple analytic scheme for estimating the
energy of protein-induced bilayer thickness deformations for
membrane proteins with noncircular cross sections. In Sec. V
we show that, for many protein shapes, these simple analytic
estimates agree remarkably well with the corresponding BVM
solutions.

For a single membrane inclusion with circular cross sec-
tion and arbitrary (angular) variations in U (θ ) and U ′(θ ),
the exact solution of the Euler-Lagrange equation in Eq. (7)
is given by Eq. (8) with Eq. (9), and the corresponding bi-
layer thickness deformation energy follows from Eq. (10)
[16,31,32,34]. For the choices for U (θ ) and U ′(θ ) in Eqs. (15)
and (16), one thus finds the bilayer thickness deformation
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energy

Ḡanaly = π R̄analy(ν̄+ − ν̄−)
[
Ū 2

0 Ē0 + Ū ′2
0 F̄0 + Ū0Ū ′

0H̄0

+ 1
2 (β̄2Ēw + γ̄ 2F̄v + δwvβ̄ γ̄ H̄w )

]∣∣
r̄=R̄analy

(30)

with v > 0 and w > 0, where R̄analy is the radius of the circu-
lar protein cross section, δwv is the Kronecker delta, and we
have defined

D̄q = Kq(
√

ν̄+r̄)∂r̄Kq(
√

ν̄−r̄) − Kq(
√

ν̄−r̄)∂r̄Kq(
√

ν̄+r̄),

Ēq = [∂r̄Kq(
√

ν̄+r̄)][∂r̄Kq(
√

ν̄−r̄)]
D̄q

,

F̄q = Kq(
√

ν̄+r̄)Kq(
√

ν̄−r̄)
D̄q

,

H̄q = Kq(
√

ν̄+r̄)∂r̄Kq(
√

ν̄−r̄) + Kq(
√

ν̄−r̄)∂r̄Kq(
√

ν̄+r̄)
D̄q

,

(31)

where q = 0, 1, . . . , Kq denotes the qth-order modified Bessel
function of the second kind, and ∂r̄ denotes the partial deriva-
tive with respect to r̄. The zeroth-order terms in Eq. (30) are
the contributions to Ḡanaly due to the constant Ū0 and Ū ′

0 in
Eqs. (15) and (16), while the remaining terms encapsulate the
effects of the variations in U (θ ) and U ′(θ ) in Eqs. (15) and
(16) on Ḡanaly. We use here Eq. (30) to analytically estimate
the bilayer thickness deformation energy of membrane pro-
teins with noncircular cross sections. To this end, we choose
R̄analy in Eq. (30) such that the circumference of the circular
membrane inclusion considered in Eq. (30) is equal to the
circumference of the membrane protein under consideration,

R̄analy = +̄

2π
, (32)

where, for the clover-leaf and polygonal boundary curves in
Eqs. (17) and (18) with Eq. (19), the protein circumference
+ follows from +̄ =

∫ 2π

0 dθ l̄ , where, as in Eq. (10), l̄ is the
(dimensionless) line element.

The analytic estimate of the thickness deformation energy
in Eq. (30) captures, for the choice of R̄analy in Eq. (32),
effects related to the overall shape of membrane proteins.
However, Eq. (30) does not capture effects due to strong
local variations in the protein cross section. For instance, the
clover-leaf shapes in Eq. (17) can give, for large enough ε and
s, protein cross sections with pronounced invaginations. If the
protein size R is comparable to the decay length of bilayer
thickness deformations, λ in Eq. (5), such protein invagina-
tions can yield overlaps in the protein-induced lipid bilayer
thickness deformations due to different portions of the bilayer-
protein interface, resulting in protein self-interactions [see
Fig. 8(a)]. As R̄ is increased, these overlaps in protein-induced
bilayer thickness deformations become less pronounced [see
Fig. 8(b)]. Depending on the value of R̄, one thus obtains
distinct distributions of the mean curvature of ū about the
protein [see Figs. 8(c) and 8(d)], which also depend on the
value and sign of Ū [see Figs. 8(e) and 8(f)].

To quantify the protein self-interactions suggested by
Fig. 8 it is useful to define, based on Eq. (10), the line tension

FIG. 8. Color maps of the bilayer thickness deformation foot-
prints due to clover-leaf protein shapes with (a) R̄ = 1 and (b) R̄ = 10
in Eq. (17) for s = 5, ε = 0.2, Ūλ = 0.3 nm in Eq. (15), and Ū ′ = 0.
Panels (c) and (d) show the mean curvature in units of 1/λ, H̄ = λH ,
associated with the thickness deformation fields in panels (a) and (b),
respectively, while panels (e) and (f) show the corresponding mean
curvature maps obtained for Ūλ = −0.3 nm in Eq. (15) rather than
Ūλ = 0.3 nm. We set 2āλ = 3.2 nm for all panels. All results were
obtained through the BVM.

along the bilayer-protein interface,

.̄ ≡ [Ū ′(θ )∇̄2ū − Ū (θ )n̂ · ∇̄3ū]|r̄=C̄(θ ), (33)

where we used Eqs. (12) and (14). In Figs. 9(a) and 9(b) we
compare, for the protein shapes in Figs. 8(a) and 8(b) with
constant Ū > 0 and Ū ′ = 0, the line tensions .̄ in Eq. (33)
and their average values 〈.̄〉 to the corresponding .̄ asso-
ciated with Ḡanaly in Eq. (30), which we denote by .̄analy.
As expected, Fig. 9 shows that the variations in .̄ are more
pronounced for smaller clover-leaf protein shapes. We also
find in Fig. 9 that 〈.̄〉 < .̄analy, with a larger |〈.̄〉 − .̄analy|
for smaller R̄ in Fig. 9.

Interestingly, we can have .̄ < 0 in Fig. 9(a) for the
smaller clover-leaf protein shape in Fig. 8(a), while .̄ > 0 in
Fig. 9(b) for the larger clover-leaf protein shape in Fig. 8(b).
The regime with .̄ < 0 in Fig. 9(a) can be understood by
noting that, with a constant Ū > 0 and Ū ′ = 0, .̄ in Eq. (33)
is directly proportional to the change in the mean curvature
of ū at the protein boundary, in the direction perpendicular to
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FIG. 9. Line tension along the bilayer-protein boundary, .̄ in
Eq. (33), as a function of θ for (a) the protein shape in Figs. 8(a) and
8(b) the protein shape in Fig. 8(b), calculated using the same parame-
ter values as in Fig. 8. The red dashed lines show the average of .̄(θ )
in Eq. (33) over the interval 0 ! θ ! 2π/5, 〈.̄〉. The yellow dashed
lines show .̄analy = Ḡanaly/+̄, where Ḡanaly is given by Eq. (30) and
+̄ is the protein circumference in Eq. (32).

the protein-bilayer boundary and into the bilayer (−n̂). For
the points along the clover-leaf boundary closest and farthest
away from the protein center, n̂ is antiparallel with the radial
direction r̂. For the points along the clover-leaf boundary
shape in Figs. 8(a) and 8(b) farthest away from the protein
center the mean curvature is negative with the sign convention
used here and decreases in magnitude as one radially moves
away from the protein boundary, yielding .̄ > 0 [Figs. 8(c)
and 8(d)]. In contrast, for the points along the clover-leaf
boundary shape closest to the protein center in Fig. 8(a) [but
not Fig. 8(b)], the mean curvature is approximately zero at the
protein boundary and decreases as one radially moves away
from the protein boundary, yielding .̄ < 0. With a different
sign convention for the mean curvature or a protein with a
constant Ū < 0 rather than Ū > 0, analogous considerations
apply [Figs. 8(e) and 8(f)]. Thus, protein self-interactions
can effectively lower the energy cost of protein-induced lipid
bilayer thickness deformations, in analogy to the energet-
ically favorable bilayer-thickness-mediated protein interac-
tions found for identical membrane proteins in close enough
proximity [8,10,11,16,30,31,33,34,48,56,76–82].

V. DEPENDENCE OF BILAYER THICKNESS
DEFORMATION ENERGY ON PROTEIN SHAPE

In this section we survey the dependence of the bilayer
thickness deformation energy in Eq. (3) on the shape of mem-
brane proteins. In particular, we allow for three distinct, not
mutually exclusive, modes for breaking rotational symmetry

about the protein center (see also Sec. II B). In Sec. V A
we take the bilayer-protein boundary conditions to be con-
stant along the protein circumference, but allow for protein
cross sections that break rotational symmetry about the pro-
tein center. In Sec. V B we explore the effect of variations
in the protein hydrophobic thickness on protein-induced bi-
layer thickness deformations. Finally, in Sec. V C we study
protein-induced bilayer thickness deformations for proteins
that show variations in the bilayer-protein contact slope along
the bilayer-protein boundary. To test the analytic approxima-
tion of the bilayer thickness deformation energy described
in Sec. IV we compare, for all three scenarios considered
in Secs. V A–V C, our BVM results to the corresponding
analytic estimates by computing the signed percent error

ξG = 100 ×
Ḡanaly − Ḡ

Ḡ
, (34)

where Ḡ is the thickness deformation energy in Eq. (6)
obtained through the BVM and the corresponding analytic
estimate Ḡanaly is given by Eq. (30) with Eq. (31).

A. Constant bilayer-protein boundary conditions

In Fig. 10 we consider the energy of protein-induced bi-
layer thickness deformations for clover-leaf [see Figs. 10(a)–
(c)] and polygonal [see Fig. 10(d)] protein shapes as a function
of protein size R̄ with a constant Ū ,= 0 and Ū ′ = 0. Previous
work on the lipid bilayer thickness deformations induced by
proteins with circular cross section [13,41] suggests that, for
R̄ - 1, Ḡ increases approximately linearly with R̄. We find
in Fig. 10 that we also approximately have Ḡ ∝ R̄ for non-
circular protein cross sections, with the (positive) constant of
proportionality depending on the protein shape. The analytic
estimates Ḡanaly obtained from Eq. (30) match Ḡ in Fig. 10
within approximately 10%, with particularly small magni-
tudes of the signed percent error ξḠ for the polygonal protein
shapes in Fig. 10(d). Note that for protein sizes R comparable
to the decay length λ we generally have ξḠ > 0 in Fig. 10,
indicating that protein self-interactions tend to lower the en-
ergy cost of protein-induced bilayer thickness deformations in
Fig. 10.

The energy cost of protein-induced bilayer thickness de-
formations depends crucially on the unperturbed lipid bilayer
thickness, which can be varied by changing the lipid chain
length m in Eq. (4) [7,8,26,40]. In Fig. 11 we plot Ḡ for clover-
leaf [see Figs. 11(a) and 11(b)] and polygonal [see Fig. 11(c)]
protein shapes as a function of the lipid chain length m
with Ū ′ = 0. We used a protein hydrophobic thickness W̄ λ =
3.8 nm, which matches the unperturbed lipid bilayer thickness
for m ≈ 16. In Fig. 11(a) we consider clover-leaf protein
shapes with different symmetries s and the same value of ε,
while in Fig. 11(b) we consider clover-leaf protein shapes with
different values of ε and the same symmetry s. Similarly as in
Fig. 10 we find that deviations from a circular protein cross
section increase Ḡ. Furthermore, similarly as in Fig. 10, the
dependence of Ḡ on m in Fig. 11 is very well captured by
the analytic approximation Ḡanaly in Eq. (30), suggesting that
the increase in Ḡ for clover-leaf and polygonal protein cross
sections compared to circular protein cross sections results
primarily from the increase in the length of the bilayer-protein
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FIG. 10. Bilayer thickness deformation energy Ḡ in Eq. (6) cal-
culated using the BVM (see Sec. III) as a function of protein size R̄
for clover-leaf protein shapes with (a) s = 3, (b) s = 4, and (c) s = 5
in Eq. (17) with the indicated values of ε, and (d) polygonal protein
shapes with the indicated values of s and P = 5 in Eq. (18). For
all panels we set Ūλ = 0.3 nm and Ū ′ = 0. The insets show the
signed percent error ξG in Eq. (34) for the corresponding analytic
approximations Ḡanaly in Eq. (30).

boundary +̄ due to deviations from a circular protein cross
section.

In Figs. 10 and 11 we set, in line with previous work on
gramicidin channels and MscL [9,13,41], U ′ = 0. As noted in
Sec. II, however, the most suitable choice for the boundary
conditions on the gradient of u at the bilayer-protein interface
has been a matter of debate [7–11,13–17,25,39,41] and is
likely to depend on the particular membrane protein and lipid

FIG. 11. Bilayer thickness deformation energy Ḡ in Eq. (6) cal-
culated using the BVM (see Sec. III) as a function of lipid chain
length m in Eq. (4) for (a) clover-leaf protein shapes with ε = 0.3 and
the indicated values of s, (b) clover-leaf protein shapes with s = 5
and the indicated values of ε, and (c) polygonal protein shapes with
the indicated values of s and P = 5 in Eq. (18). For all panels we set
Ū ′ = 0 and W̄ λ = 3.8 nm in Eq. (13), and R̄λ ≈ 2.3 nm. The insets
show the signed percent error ξG in Eq. (34) for the corresponding
analytic approximations Ḡanaly in Eq. (30). We always have |Ū | > 0
for the m-discretization used here.

species under consideration. In particular, U ′ may differ from
zero or vary along the bilayer-protein interface, or U ′ may
satisfy natural boundary conditions with U ′ being adjusted
so as to minimize the bilayer thickness deformation energy.
As illustrated in Fig. 12 for a membrane protein with circular
cross section and constant Ūλ = 0.3 nm, the value of U ′ can
have a substantial effect on the shape of protein-induced lipid
bilayer thickness deformations. In particular, for U ′ ≈ 0.3 in
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FIG. 12. Bilayer thickness deformation profile ū due to a protein
with a circular cross section as a function of the radial distance
from the protein center, r̄ = r/λ, obtained from the exact analytic
solution in Eq. (8) with Eq. (9) for the indicated values of Ū ′. We set
Ūλ = 0.3 nm and R̄λ = 2.3 nm.

Fig. 12 protein-induced lipid bilayer thickness deformations
are seen to decay rapidly.

Plotting Ḡ as a function of U ′ for the scenario in Fig. 12
(see Fig. 13), we find that Ḡ is minimal for U ′ ≈ 0.28 with, as
suggested by Ḡanaly in Eq. (30), an approximately quadratic
dependence of Ḡ on U ′. Allowing for noncircular protein
cross sections we find that the optimal U ′ depends strongly,
for large enough ε, on the symmetry of clover-leaf protein
shapes [see Figs. 13(a) and 13(b)], but only weakly on the
symmetry of polygonal protein shapes [see Fig. 13(c)]. Note
that, for clover-leaf protein shapes, the optimal U ′ tend to
shift towards U ′ ≈ 0 compared to proteins with circular cross
section. This can be understood by noting that, for clover-
leaf protein shapes, the effective reduction in the size of
the membrane footprint brought about by U ′ ,= 0 competes
with contributions to the bilayer thickness deformation energy
due to protein self-interactions. Conversely, polygonal protein
shapes show only weak self-interactions, resulting in minor
shifts in the optimal U ′ compared to proteins with circular
cross section. Finally, we note that the analytic estimates
Ḡanaly in Eq. (30) tend to become less accurate for larger
U ′, with up to |ξG| ≈ 60% for the clover-leaf and polygonal
shapes considered here [Fig. 13 (insets)].

B. Variations in protein hydrophobic thickness

Membrane proteins are, in general, expected to show varia-
tions in their hydrophobic thickness along the bilayer-protein
interface [83,84]. For oligomeric membrane proteins, vari-
ations in protein hydrophobic thickness are expected to be
periodic so as to reflect the protein symmetry. We employ
here the sinusoidal variations of U (θ ) in Eq. (15) as a generic
model of variations in protein hydrophobic thickness, in
which we denote the periodicity of U (θ ) by w. We focus,
for now, on zero bilayer-protein contact slopes, U ′ = 0 in
Eq. (16), but return to the effects of angular variations in U ′ in
Sec. V C.

Figure 14 shows that variations in U (θ ) can have a strong
impact on the energy cost of protein-induced bilayer thickness
deformations, for noncircular as well as circular protein cross
sections. The analytic estimate Ḡanaly in Eq. (30) is seen to

FIG. 13. Bilayer thickness deformation energy Ḡ in Eq. (6)
calculated using the BVM (see Sec. III) as a function of the bilayer-
protein contact slope Ū ′ for (a) clover-leaf protein shapes with ε =
0.3 and the indicated values of s, (b) clover-leaf protein shapes with
s = 5 and the indicated values of ε, and (c) polygonal protein shapes
with the indicated values of s and P = 5, and cylindrical protein
shapes with a circular cross section of radius R̄. For all panels we set
R̄λ = 2.3 nm and Ūλ = 0.3 nm. The insets show the signed percent
error ξG in Eq. (34) for the corresponding analytic approximations
Ḡanaly in Eq. (30).

approximately capture Ḡ in Fig. 14, but tends to become
less accurate as the protein cross section exhibits greater
deviations from a circular shape, with up to |ξG| ≈ 50% for
the clover-leaf and polygonal protein shapes considered here
[Fig. 14 (insets)]. Note that, for large enough w, Ḡ in Fig. 14
scales approximately as w3 for all protein cross sections con-
sidered. This can be understood from Ḡanaly in Eq. (30) by
noting that Ēw ∼ w3 at large w, and γ̄ = 0 if U ′ = 0.
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FIG. 14. Bilayer thickness deformation energy Ḡ in Eq. (6) calculated using the BVM (see Sec. III) as a function of the periodicity in
protein hydrophobic thickness, w in Eq. (15), for (a) the clover-leaf protein shapes in Eq. (17) with s = 2 and the indicated values of ε, (b) the
clover-leaf protein shapes in Eq. (17) with s = 3 and the indicated values of ε, and (c) the polygonal protein shapes in Eq. (18) with the
indicated values of s and P = 5. For all panels we set R̄λ = 2.3 nm, Ū0λ = −0.1 nm, β̄λ = 0.5 nm, and Ū ′ = 0. The red dashed lines indicate
the asymptotic scaling ∼w3. The insets show the signed percent error ξG in Eq. (34) for the corresponding analytic approximations Ḡanaly in
Eq. (30). In panel (d) we show color maps of the protein-induced bilayer thickness deformations associated with ε = 0.4 in panel (a) at (i)
w = 2 and (ii) w = 3, with ε = 0.4 in panel (b) at (iii) w = 3 and (iv) w = 4, and with s = 4 in panel (c) at (v) w = 2 and (vi) w = 3.

While, broadly speaking, variations in protein hydrophobic
thickness are seen to increase Ḡ in Fig. 14 for all protein
cross sections considered, the interplay of U (θ ) and the shape
of the protein cross section can yield comparatively favor-
able or unfavorable scenarios. For instance, depending on
whether adjacent regions of the bilayer-protein boundaries in
clover-leaf protein shapes yield bilayer thickness deforma-
tions of the same sign [see panels (i) and (iii) in Fig. 14(d)]
or distinct signs [see panels (ii) and (iv) in Fig. 14(d)], pro-
tein self-interactions can decrease or increase the energy of
protein-induced bilayer thickness deformations. For polygo-
nal protein shapes, we find that scenarios in which the maxima
or minima of U (θ ) coincide with the corners of the polygonal
shapes [see panel (v) in Fig. 14(d)] tend to be unfavorable
from an energetic perspective, as compared to scenarios in
which the extrema of U (θ ) tend to occur along the polygonal
faces [see panel (vi) in Fig. 14(d)]. However, compared to the
clover-leaf protein shapes considered in Fig. 14, the bilayer
thickness deformation energy associated with the polygonal
protein shapes in Fig. 14 depends only weakly on the in-
terplay between U (θ ) and the shape of the protein cross
section.

C. Variations in bilayer-protein contact slope

Similarly as the variations in U (θ ) considered in Sec. V B,
U ′(θ ) in Eq. (16) will generally vary along the bilayer-protein

interface. Such variations could come about, for instance,
through the protein structure or the binding of peptides to
some sections of the bilayer-protein interface [8,37]. Alter-
natively, if the (normal) gradient of ū obeys natural boundary
conditions at the bilayer-protein interface, a noncircular pro-
tein cross section or variations in U (θ ) may effectively induce
variations in U ′(θ ). We employ here the simple model of
U ′(θ ) in Eq. (16) to explore the effect of variations in
U ′(θ ) on the energy cost of protein-induced lipid bilayer
thickness deformations. For simplicity we thereby use a
constant Ū > 0.

Figure 15 illustrates the impact of variations in U ′(θ ) on
the energy cost of protein-induced lipid bilayer thickness de-
formations. Similarly as in Fig. 14, the analytic estimate Ḡanaly
in Eq. (30) is seen to approximately capture Ḡ in Fig. 15,
but tends to become less accurate with increasing deviation
of the protein cross section from a circular shape, with up
to |ξG| ≈ 40% for the clover-leaf and polygonal shapes con-
sidered here [Fig. 15 (insets)]. Note that, for large enough
v, Ḡ in Fig. 14 scales approximately linearly with v, inde-
pendent of the protein cross section considered. This can be
understood from Ḡanaly in Eq. (30) by noting that F̄v ∼ v at
large v. In analogy to Fig. 14 we find in Fig. 15 that, broadly
speaking, variations in U ′(θ ) increase Ḡ for all protein cross
sections considered. However, the interplay of U ′(θ ) and the
shape of the protein cross section can yield, similarly as in
Fig. 14, comparatively favorable or unfavorable scenarios. In
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FIG. 15. Bilayer thickness deformation energy Ḡ in Eq. (6) calculated using the BVM (see Sec. III) as a function of the periodicity in
the bilayer-protein contact slope, v in Eq. (16), for (a) the clover-leaf protein shapes in Eq. (17) with s = 2 and the indicated values of ε,
(b) the clover-leaf protein shapes in Eq. (17) with s = 3 and the indicated values of ε, and (c) the polygonal protein shapes in Eq. (18) with
the indicated values of s and P = 5. For all panels we set R̄λ = 2.3 nm, Ūλ = 0.3 nm, Ū ′

0 = 0, and γ̄ = 0.3. The red dashed lines indicate
the asymptotic scaling ∼v. The insets show the signed percent error ξG in Eq. (34) for the corresponding analytic approximations Ḡanaly in
Eq. (30). In panel (d) we show color maps of the protein-induced bilayer thickness deformations associated with ε = 0.4 in panel (a) at (i)
v = 2 and (ii) v = 4, with ε = 0.4 in panel (b) at (iii) v = 3 and (iv) v = 4, and with s = 4 in panel (c) at (v) v = 2 and (vi) v = 4.

particular, for the clover-leaf protein shapes in Figs. 15(a) and
15(b), it tends to be energetically favorable for the minima
of Ū ′(θ ) to coincide with the minima of C̄(θ ), so as to make
protein self-interactions more favorable, and the maxima of
Ū ′(θ ) to coincide with the maxima of C̄(θ ), so as to reduce the
protein’s membrane footprint. This configuration is achieved,
for instance, when v = s [see panels (i) and (iii) in Fig. 15(d)].
Conversely, it tends to be energetically unfavorable for the
minima of Ū ′(θ ) to coincide with the maxima of C̄(θ ), and
vice versa, or for Ū ′(θ ) and C̄(θ ) to be out of phase [see
panels (ii) and (iv) in Fig. 15(d)]. For the polygonal protein
shapes in Fig. 15(c), particularly favorable configurations tend
to be achieved when the minima of Ū ′(θ ) fall on the polygonal
faces, rather than on the corners of the polygonal shapes [see
panels (v) and (vi) in Fig. 15(d)].

VI. TRANSITIONS IN PROTEIN ORGANIZATION
AND SHAPE

Section V demonstrates that protein-induced lipid bilayer
thickness deformations show a strong dependence on pro-
tein shape, and that changes in protein shape can bring
about changes in the bilayer thickness deformation energy
>10 kBT in magnitude. In the present section we suggest
possible implications of these results for the biophysical prop-
erties of membrane proteins. In particular, Sec. VI A explores
the energetic contribution of lipid bilayer thickness deforma-

tions to the self-assembly of protein monomers into protein
oligomers and how changes in bilayer-protein interactions
could destabilize protein oligomers. In Sec. VI B we inves-
tigate the effect of lipid bilayer thickness deformations on
transitions in protein conformational state that involve sub-
stantial changes in protein shape.

A. Self-assembly of protein oligomers

Complex molecular architectures of membrane proteins
often arise from self-assembly of small protein subunits
(monomers) into protein oligomers [35,36]. While entropic
effects are generally expected to oppose the self-assembly
of membrane protein oligomers, bilayer-protein interactions
can favor or oppose protein oligomerization depending on
the lipid composition, protein shape, and membrane deforma-
tion mode considered [8,10,11,16,30,31,33,34,48,49,56,69,
76–82,85–90]. In particular, the thermodynamic competition
between different oligomeric states of membrane proteins de-
pends crucially on how the energy per protein subunit changes
with protein oligomeric state. If the hydrophobic thickness
of the protein oligomers or monomers differs from the un-
perturbed hydrophobic thickness of the surrounding lipid
bilayer, one set of contributions to the oligomerization energy
is expected to arise from protein-induced bilayer thickness
deformations [8,10,11,16,30,31,33,34,48,76–82,90]. Other
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potential contributions to the oligomerization energy can
arise, for instance, from lipid tilt deformations [56,85,86].

We illustrate here, in the context of protein-induced lipid
bilayer thickness deformations, how contributions to the
oligomerization energy due to bilayer-protein interactions
can be calculated through the BVM. For simplicity, we
thereby consider a protein oligomer of symmetry s with a
clover-leaf or polygonal cross section, and take the s (iden-
tical) competing protein monomers to have circular cross
sections with the same total area as the protein oligomer,
and no interactions between the monomers. Furthermore,
we assume that the protein oligomers and monomers show
constant values of U and U ′ along the bilayer-protein in-
terface, with identical U for the protein oligomers and
monomers and U ′ = 0 for the protein monomers. These as-
sumptions could easily be lifted to describe more complex
scenarios.

Figure 16 shows the difference between the (dimension-
less) bilayer thickness deformation energies associated with
protein oligomers and their corresponding monomers, 0Ḡ,
as a function of the lipid chain length m [see Fig. 16(a)]
and the bilayer-oligomer contact slope U ′ [see Fig. 16(b)]
for a variety of shapes of the oligomer cross section. The
insets in Fig. 16 show the differences in the oligomerization
energies obtained from the analytic approximation Ḡanaly in
Eq. (30) and the BVM, 0Ḡξ = 0Ḡanaly − 0Ḡ. Equation (30)
is seen to provide, for modest magnitudes of U and U ′,
good estimates of the oligomerization energy. We generally
have 0G < 0 in Fig. 16(a), indicating that protein-induced
lipid bilayer thickness deformations support oligomeriza-
tion. This can be understood from Ḡanaly by noting that
the protein oligomers in Fig. 16(a) have a smaller circum-
ference than their corresponding monomers. Interestingly,
Fig. 16(b) shows that 0G can become positive for large
enough magnitudes of U ′ for the protein oligomer, thus desta-
bilizing the protein oligomer. Such a change in U ′ could be
achieved, for instance, through a transition in the conforma-
tional state of the oligomer or the binding of peptides to
the oligomer [8,37]. Figure 16 thus suggests that protein-
induced bilayer thickness deformations could assist both in
the assembly and disassembly of protein oligomers, and con-
tribute >10 kBT to the energy budget of oligomer assembly or
disassembly.

B. Transitions in protein conformational state

To perform their biological functions, membrane proteins
often have to transition between different conformational
states. Such transitions in protein conformational state can
be accompanied by changes in the cross-sectional shape of
membrane proteins producing, in turn, changes in protein-
induced lipid bilayer deformations. Membrane proteins can
thus be regulated by lipid bilayer properties, such as the bi-
layer hydrophobic thickness [7,8,40,91]. We illustrate here
how the BVM can be used to calculate the contribution
of lipid bilayer thickness deformations to the energy differ-
ence between two protein states with distinct cross-sectional
shapes. For simplicity, we thereby take the two states of
the membrane protein to show identical U and U ′ with U
and U ′ both being constant along the bilayer-protein inter-

FIG. 16. Difference between the lipid bilayer thickness deforma-
tion energies associated with protein oligomers of symmetry s and
their corresponding s monomers, 0Ḡ, calculated using the BVM (see
Sec. III) as a function of (a) the lipid chain length m in Eq. (4) and
(b) the (constant) bilayer-oligomer contact slope U ′ in Eq. (14) for a
variety of clover-leaf (solid curves) and polygonal (dashed curves)
shapes of the protein oligomers. We took the protein monomers
to have circular cross sections with U ′ = 0 and used the indicated
values of s, with ε = 0.3 for the clover-leaf oligomer shapes in
Eq. (17) and P = 5 for the polygonal oligomer shapes in Eq. (18).
We set R̄λ = 1 nm for the monomer radii and used identical cross-
sectional areas of the oligomers and their corresponding monomers.
We set U ′ = 0 in panel (a), 2āλ = 3.2 nm in panel (b), and used
W̄ λ = 3.8 nm for the protein monomers and oligomers in all panels.
The schematics in the insets illustrate transitions between monomers
and oligomers for selected oligomeric shapes. The plots in the in-
sets show the difference in the oligomerization energies obtained
from the analytic approximation Ḡanaly in Eq. (30) and the BVM,
0Ḡξ = 0Ḡanaly − 0Ḡ, for each curve in the main panels.

face, and to have cross-sectional shapes with the same area.
These assumptions could easily be lifted to provide detailed
models of specific conformational transitions in membrane
proteins, which may also involve more than just two protein
states.

Figure 17 shows the difference between the lipid bilayer
thickness deformation energies associated with the final and
initial protein shapes indicated in the insets, 0Ḡ, as a func-
tion of the lipid chain length m [see Figs. 17(a) and 17(b)]
and the bilayer-protein contact slope U ′ [see Figs. 17(c)
and 17(d)]. The insets in Fig. 17 show the corresponding
differences in the protein transition energies obtained from
the analytic approximation Ḡanaly in Eq. (30) and the BVM,
0Ḡξ = 0Ḡanaly − 0Ḡ. Similarly as in Fig. 16, Eq. (30) is
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FIG. 17. Difference between the lipid bilayer thickness deformation energies associated with the final and initial protein shapes indicated
in the insets, 0Ḡ, calculated using the BVM (see Sec. III) as a function of (a), (b) the lipid chain length m in Eq. (4) and (c), (d) the (constant)
bilayer-protein contact slope U ′ in Eq. (14). The values of ε associated with each clover-leaf shape in Eq. (17) are indicated in the insets,
while for the polygonal protein shapes we set P = 5. We set U ′ = 0 in panels (a), (b) and 2āλ = 3.2 nm in panels (c), (d) and used W̄ λ = 3.8
nm for all panels. The cross sections of all protein shapes considered here have area π R̄2 with R̄λ = 2.3 nm. The plots in the insets show the
differences in the protein transition energies obtained from the analytic approximation Ḡanaly in Eq. (30) and the BVM, 0Ḡξ = 0Ḡanaly − 0Ḡ,
for each curve in the main panels.

seen to provide, for modest magnitudes of U and U ′, good
estimates of 0Ḡ in Fig. 17. In Figs. 17(a) and 17(c) we
consider idealized scenarios in which the initial protein shape
shows a circular cross section, while the final protein state
corresponds to a clover-leaf or polygonal protein shape. We
find that bilayer thickness deformations generally inhibit such
transitions in protein shape, 0Ḡ " 0, which is easily under-
stood from Ḡanaly in Eq. (30) by noting that these transitions
in protein shape are accompanied by an increase in protein
circumference. In Fig. 17(b) we study 0Ḡ for transitions
between proteins with noncircular cross sections. We thereby
arranged the initial and final protein states such that 0Ḡ ! 0.
Similarly as in Figs. 17(a) and 17(c), the results in Fig. 17(b)
can be understood by noting that the transitions in protein
shape in Fig. 17(b) are accompanied by a decrease in pro-
tein circumference. Note, in particular, that the energetically
favorable protein shapes in Fig. 17(b) tend to correspond
to polygonal protein shapes or clover-leaf shapes with
small ε.

Finally, we consider in Fig. 17(d) scenarios where the sign
of 0Ḡ does not necessarily follow from the relative protein
circumferences of the initial and final protein shapes, and may
not be captured by Ganaly in Eq. (30) for all the values of U and
U ′ considered here. In particular, for the dotted teal, green,
and red curves in Fig. 17(d) we chose the initial and final
protein shapes so that their circumferences lie within 1% of

each other, and the remaining protein shapes so that the final
protein shape has a circumference that is substantially smaller
than the circumference associated with the initial protein state,
by at least 6%. The former sets of protein shapes yield a
change of sign in 0Ḡ with U ′. Three of the latter sets of
protein shapes, corresponding to the teal, purple, and dotted
purple curves in Fig. 17(d), always yield 0Ḡ ! 0, which can
again be understood from Ḡanaly in Eq. (30), while the fourth,
corresponding to the pink curve in Fig. 17(d), can yield a
change of sign in 0Ḡ with U ′. In analogy to Fig. 16(b) this
suggests that, for certain protein shapes, modification of U ′

in a given (stable) protein conformational state through, for
instance, peptide binding [8,37] could trigger, mediated by
protein-induced bilayer thickness deformations, a change in
the protein conformational state. We note, however, that for
the protein shapes considered in Fig. 17(d) 0G exceeds zero
by not more than a few kBT .

VII. SUMMARY AND CONCLUSIONS

Employing protein-induced lipid bilayer thickness defor-
mations as a test case [7–11,13–20,22–26], we have described
here a BVM that permits the construction of analytic series
solutions of protein-induced lipid bilayer deformations for
large as well as small deviations from a circular protein cross
section. In addition to the membrane protein cross section,
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our BVM allows for a breaking of rotational symmetry about
the protein center through angular variations in the boundary
conditions along the bilayer-protein interface—in particular,
for the scenarios considered here, in the protein hydropho-
bic thickness and in the bilayer-protein contact slope along
the bilayer-protein boundary. Our BVM reproduces avail-
able analytic solutions for membrane proteins with circular
cross section [9,13,16,31,32,39] and yields, for membrane
proteins with noncircular cross section, excellent agreement
with numerical, finite element solutions. Based on these BVM
solutions, we formulated a simple analytic approximation
of the lipid bilayer thickness deformation energy associated
with general protein shapes [see Eq. (30) with Eq. (31)]. We
find that, for modest deviations from rotational symmetry,
this analytic approximation is in good agreement with BVM
solutions. These results suggest that, to a first approxima-
tion, the effect of membrane protein shape on the energy of
bilayer thickness deformations can be understood based on
the length of the circumference of noncircular protein cross
sections.

Through our BVM and analytic approximation of the lipid
bilayer thickness deformation energy, we surveyed the depen-
dence of protein-induced lipid bilayer thickness deformations
on protein shape. We find that protein shape tends to have
a large effect on the energy of protein-induced lipid bilayer
thickness deformations, typically shifting the bilayer defor-
mation energy by more than 10 kBT . A limitation of the BVM
described here arises for protein shapes that show extreme
deviations from circular symmetry, in which case BVM so-
lutions tend to involve a large number of terms and, hence,
become increasingly intractable. In such cases it may be ad-
visable to modify the APD method for the distribution of
boundary points employed here, so as to reduce the number
of terms required in the lipid bilayer thickness deformation
field in Eq. (20) with Eq. (21). While we have focused
here on bilayer thickness deformations, it would be inter-
esting to use a BVM approach analogous to that employed
in this article to construct analytic series solutions for other
modes of protein-induced lipid bilayer deformations such
as, for instance, bilayer midplane or lipid tilt deformations
[8,18–24,27–29,46,47,49,50,54–56,60,85,86]. On this basis
one could, for instance, further investigate how anisotropic
membrane protein shapes can give rise to anisotropic mem-
brane elastic properties [27,28]. Furthermore, it would be
interesting to construct BVM solutions for membrane proteins
embedded in bilayers with heterogeneous lipid composition
[59,92–96].

We find that, in the case of noncircular protein cross
sections, protein self-interactions provide an important mo-
tif for the energy of protein-induced lipid bilayer thickness
deformations. Such self-interactions arise for invaginations
in the protein cross section, from overlaps in the bilayer
deformations induced at different sections of the bilayer-
protein interface. The basic phenomenology of membrane
protein self-interactions can be understood by drawing analo-
gies with bilayer-thickness-mediated interactions between
proteins [8,10,11,16,30,31,33,34,48,56,76–82]. In particular,
membrane protein self-interactions can effectively lower
the energy cost of protein-induced lipid bilayer thickness
deformations for proteins with constant bilayer-protein hy-

drophobic mismatch and zero bilayer-protein contact slope.
For nonzero bilayer-protein contact slopes, or for varia-
tions in the bilayer-protein hydrophobic mismatch or in the
bilayer-protein contact slope along the bilayer-protein inter-
face, protein self-interactions can yield dramatic shifts in
the bilayer thickness deformation energy. Thus, the inter-
play between the cross-sectional shape of membrane proteins,
protein hydrophobic thickness, and bilayer-protein contact
slope yields a rich energy landscape of protein-induced lipid
bilayer thickness deformations. Interestingly, the hydropho-
bic thickness or bilayer-protein contact slope of membrane
proteins may be modified in cells through, for instance, pro-
tein mutations, changes in lipid composition, or the binding
of peptides at the bilayer-protein interface, while protein
oligomerization and transitions in protein conformational
state tend to change the cross-sectional shape of membrane
proteins. The results described here therefore suggest gen-
eral physical mechanisms for how protein shape couples
to the function, regulation, and organization of membrane
proteins.
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APPENDIX A: COMPUTATIONAL IMPLEMENTATION
OF THE BOUNDARY VALUE METHOD

The general solution for the bilayer thickness deforma-
tion field in Eq. (20) with Eq. (21) involves modified Bessel
functions of the second kind, Kn, of any order n [60]. Kn(x)
can vary rapidly with x, leading to numerical overflow and
large round-off (floating point) errors [71]. These numerical
issues are compounded by error propagation in the arithmetic
operations necessary for solving the linear system of equa-
tions imposing the bilayer-protein boundary conditions in the
BVM [71,72]. In particular, if the values of the matrix A in
Eq. (24) vary over many orders of magnitude, which is typi-
cally the case for the scenarios considered here, the resulting
propagation of floating point errors can be catastrophic. These
problems are ameliorated through the APD method, which
effectively reduces the number of terms required in the series
in Eq. (20) with Eq. (21), as well as LU decomposition with
partial pivoting of A [71,72], which reduces the pairing of
matrix elements that differ over many orders of magnitude.

We solved the linear system of equations in Eq. (24)
in C++ using F. Johansson’s arbitrary precision library for
C/C++, Arb [73], which includes built-in functions for LU
decomposition with partial pivoting. Importantly, Arb also in-
cludes Bessel functions with support for complex arguments.
The linear system of equations in Eq. (24) encompasses
4N + 2 independent equations. As N is increased in Eq. (20)
with Eq. (21), solving Eq. (24) therefore becomes increasingly
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FIG. 18. Boundary error ηb′ in Eq. (25) in BVM calculations (see
Sec. III) for clover-leaf protein shapes with (a) s = 1 and ε = 0.54 in
Eq. (17) and (b) s = 3 and ε = 0.38 in Eq. (17) as a function of the
gap factor ) in Eq. (28). We set R ≈ 2.3 nm, U = 0.3 nm, and U ′ =
0. For ease of comparison we used, for each curve, the indicated,
fixed values of N in Eq. (20) with Eq. (21).

intensive from a computational perspective. To improve the
computational efficiency of our calculations, we use OpenMP
multithreading [75] to spread computations across multiple
CPU cores.

As discussed in Sec. III, the APD method involves the gap
factor ) in Eq. (28), which we optimized so that the boundary
error ηb′ ! 0.1% in Eq. (25) and we obtained changes in G
and ηb′ of no more than 10−5% as the numerical precision
was increased. A suitable choice for ) thus allows construc-
tion of accurate solutions through Eq. (20) with Eq. (21) at
lower orders N , thus improving the numerical performance
of the BVM. For example, Fig. 18 shows ηb′ as a function
of ) for clover-leaf protein shapes with symmetries s = 1
[see Fig. 18(a)] and s = 3 [see Fig. 18(b)], with constant U
and U ′ along the bilayer-protein interface. The solutions in
Fig. 18 were computed at the indicated orders N in Eq. (20)
with Eq. (21). Figure 18 illustrates how the optimal gap fac-
tor ) converges with increasing N . For clover-leaf protein
shapes we generally find that the optimal ) increases with
increasing ε. For the scenarios considered here we also find
that, for a given N in Eq. (20) with Eq. (21) and shape of the
protein cross section, the optimal ) changes only weakly if
one allows for variations in U or U ′ along the bilayer-protein
interface.

APPENDIX B: NUMERICAL PRECISION

For the numerical calculations of the lipid bilayer thickness
deformation energy G in Eq. (26) presented in this article, we

FIG. 19. (a) Lipid bilayer thickness deformation energy G in
Eq. (26) calculated using the BVM (see Sec. III) and (b) correspond-
ing boundary error ηb′ in Eq. (25) for clover-leaf protein shapes as
a function of the bit precision employed in the numerical compu-
tations. We used the indicated values of s and ε in Eq. (17), and
R ≈ 2.3 nm, U = 0.3 nm, and U ′ = 0. For ease of comparison we
used for s = 1 the fixed values N = 20 in Eq. (20) with Eq. (21) and
) = 0.726 in Eq. (28), N = 48 and ) = 0.62 for s = 2, N = 72 and
) = 0.52 for s = 3, N = 90 and ) = 0.552 for s = 4, and N = 125
and ) = 0.45 for s = 5.

generally used numbers with precision (substantially) greater
than double precision (64 bits) [73], so as to meet the numer-
ical precision criteria described in Sec. III with the boundary
error ηb′ ! 0.1% in Eq. (25) and changes in G and ηb′ of no
more than 10−5% as the numerical precision is increased (see
also Appendix A). However, many programming languages
do not have built-in support for numerical precision greater
than double precision. To illustrate the extent to which double-
precision calculations could be used to approximate the BVM
results described here, we plot in Fig. 19 the bilayer thickness
deformation energy G [see Fig. 19(a)] and the corresponding
boundary error ηb′ [see Fig. 19(b)] vs bit precision for several
clover-leaf protein symmetries s and the indicated values of
ε. As described in Appendix A, the results in Fig. 19 were
obtained with F. Johansson’s arbitrary precision library for
C/C++, Arb [73]. We have ηb′ ! 0.1% in Fig. 19 as the float-
ing point precision is increased beyond double precision, with
changes in G and ηb′ of no more than 10−5%. For the clover-
leaf protein shapes considered in this article, we generally
find that numerical precision greater than double precision
is required for large s or large ε. For the polygonal protein
shapes considered in this article, we find that a numerical
precision greater than double precision is generally required
to meet the numerical precision criteria described in Sec. III.
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